|
On 1 Dec 2008, at 12:12, podenok wrote:
В математике существуют два понятия: связанный вектор (у него закреплены начало и конец) и свободный вектор (или просто вектор), который можно определить как множество всех попарно равных связанных векторов.
Закреплены где? Примерчик можно?
Офтопик так офтопик. Вообще-то это стандартное понятие школьной геометрии.
В кинематике связанным вектором является, например, мгновенная скорость частицы, которая в данный момент времени находится в некоторой точке (в ней и "закреплена" эта скорость), а свободным - например, средняя скорость за некоторый интервал времени - потому что нет такой конкретной точки, от которой имело бы смысл ее откладывать. В механике как связанные векторы можно понимать векторы сил, приложенных к определенным точкам твердого тела, а как свободный вектор - угловую скорость вращения твердого тела (она одна и та же во всех его точках). Закрепление конца вектора менее существенно, чем закрепление его начала: если начало, величина и направление вектора фиксированы, то конец определяется однозначно.
Если переформулировка определения "связанного" и "свободного" векторов на более "наукообразном" языке дифференциальной геометрии может внести ясность, то выглядит она примерно так: рассмотрим евклидово векторное пространство произвольной размерности как (плоское) дифференцируемое многообразие, тогда "связанный вектор", отложенный из некоторой точки - это касательный вектор в этой точке, а "свободный вектор" - класс эквивалентности касательных векторов, переводимых друг в друга параллельным переносом (поскольку многообразие плоское, параллельный перенос по замкнутому контуру не меняет касательного вектора, так что эквивалентность определена корректно). Определения дифференцируемого многообразия, касательного вектора, параллельного переноса и отношения эквивалентности предполагаются стандартными. Но заметьте, что это "наукообразное" определение по существу является буквальным повторением того, что написал Kostin (причем, скорее всего, оно и есть источник школьного определения - автор учебника Погорелов был дифференциальным геометром).
Hope this helps,
Андрей
|
|