
The nccsect package∗†

Alexander I. Rozhenko
rozhenko@oapmg.sscc.ru

2006/01/19

Contents

1 The Scope and Objectives . 1

2 User Interface . 2

3 Create New Section Styles . 6

4 Declare Sections and Captions . 8

5 Declare TOC-Entries . 9

6 Declare New Float Types . 11

7 Epigraphs and Related Staff . 12

8 Declare Part . 13

1 The Scope and Objectives

The package provides a new implementation of sections, captions, and toc-entries
independent on the LATEX kernel. The reasons for this are concerned with the
following disadvantages of the standard LATEX implementation:

1 Standard LATEX sectioning commands can prepare display sections in the sin-
gle style: justified paragraph with hang indented number. To change this style
to another one (centered, par-indented, or else), you need to re-implement the
internal \@sect command. It is no control for this style on user’s level.

∗This file has version number v1.5, last revised 2006/01/19.
†Great thanks to Denis G. Samsonenko <d.g.samsonenko@gmail.com> who proposed many

significant improvements to the package.

1

2 If you want to customize the presentation a number in a section (for example,
put a paragraph mark § before a number or put a point after a number), you at
least need to re-implement the \@sect command.

3 The sectioning commands provide no straightforward control for running head-
ings. The marking commands like the \sectionmark solve this problem partially.
Using them within parameter of sectioning command, you can change the mark
properly, but this solution does not work in complicated documents which use
first and last marks appearing on a page. The safe solution consists in direct
replacement a mark prepared within the \@sect command to a custom mark.

4 Special efforts are required to pass a section without number to the header
and to the toc-list. There is no simple solution providing this action.

5 Captions for tables and figures are prepared in just the same way, although,
they are usually used in different places of floating environments: table captions
start before a table, but figure captions go after a figure. So, the vertical skip
inserted before a caption is unnecessary for table captions. The right solution is
to design captions for different float types in different ways.

6 The star-form of captions is absent. It is useful when a document contains an
alone figure or table. Moreover, in fiction books, unnumbered captions useful.

7 The design of toc-entries is hard for modifications. It is much better to cal-
culate the skips in toc-entries on the base of prototyping technique instead of
hard-coding them with absolute values. Moreover, the skips for nested sections
must depend on higher level skips. For example, if we change skips for a section
entry, the skips for subsection entries should be adjusted automatically.

The package eliminates above-mention disadvantages of the standard LATEX
implementation. The commands implemented in it are divided into two levels:
user level and design level. The user-level commands are intended for use within a
document and the design-level commands are directed to class and package writers.

2 User Interface

The table below shows sectioning commands provided with standard LATEX classes.
Every section has a level (an integer number). Sections can be printed in one of
two modes: display or running mode. Display section is prepared as a separate
justified paragraph having a hang indent if a section has a number. Running
section starts a paragraph.

2

Command Level Mode

\part −1 or 01 display
\chapter 02 display
\section 1 display
\subsection 2 display
\subsubsection 3 display
\paragraph 4 running
\subparagraph 5 running

The package redefines all standard sectioning commands. Along with the com-\startsection

mands shown in the table above, you can use the following uniform notations:

\startsection{〈level〉}[〈toc-entry〉]{〈title〉} or
\startsection{〈level〉}*{〈title〉}

The 〈level〉 is a level of section. A negative level produces a part. The first com-
mand produces a numbered section (if the numbering depth allows this) and the
last one produces a section without number. As for the standard LATEX sectioning,
the first variant of the \startsection command additionally passes their argu-
ments to the section mark command (if the mark command exists) and to the
aux-file. The last variant does no additional actions.

NOTE: The package allows declaring additional section levels. They, of course,
have no predefined alias names as standard section levels.

The \sectionstyle[〈type〉]{〈style〉} command allows change a style of sub-\sectionstyle

sequent display sections of the given 〈type〉:

main the section of zero level (\part or \chapter);

section the \section;

subsection the \subsection;

subsubsection the \subsubsection;

paragraph the \paragraph;

subparagraph the \subparagraph;

section@vi the section of 6th level, and so on.

If the 〈type〉 parameter is omitted, the command acts on all subsequent display
sections expect those having a specialized style. The following styles are prede-
fined:

hangindent standard LaTeX style (default);

hangindent* the same as hangindent, but ragged right;
1The \part command has zero level in article-like classes and has the negative level in book-

like classes. In book-like classes a part is prepared on a separate page.
2The \chapter command is defined in book-like classes only.

3

parindent title indented on \parindent;

parindent* the same as parindent, but ragged right;

hangparindent \parindent indented with hang number;

hangparindent* the same as hangparindent, but ragged right;

center centered title;

centerlast justified title without indent whose last line is centered.

You can apply the \sectionstyle so many times in the document as you want.
This command complies with standard LATEX scoping rules.

NOTE: The section style acts on display sections that were prepared with the
dynamic alignment (see Section 4). By default, the sections of levels from 0 to 3
have the dynamic alignment. The section of zero level has no hang indentation.

The \sectiontagsuffix[〈type〉]{〈style〉} command allows change a suffix in-\sectiontagsuffix

serted after number tag for sections of the given 〈type〉. If the 〈type〉 parameter
is omitted, the command acts on all subsequent sections expect those having a
specialized tag suffix.

The paragraph indentation after a display section is controlled with the\indentaftersection

\noindentaftersection \indentaftersection and \noindentaftersection commands. The first one
allows and the last one suppresses indentation after section. The commands act
on the subsequent display sections in the scope of their use.

If a document contains two subsequent sectioning commands (for example,\aftersectionvspace

\section and \subsection) the distance between their titles is equal to the skip
after the first sectioning command. Sometimes it is necessary to insert another
vertical space here. To override the space inserted between sections, use the com-
mand

\aftersectionvspace{〈distance〉}

This command replaces the space inserted by a previous sectioning command
with the \vspace{〈distance〉}. It works in the only case when goes right after
a command producing a display section. Otherwise, the specified 〈distance〉 is
ignored. The following example shows how to customize the \subsection com-
mand in such a way that the distance between it and a previous \section will be
3ex plus .5ex minus .2ex:

\renewcommand\subsection{%
\aftersectionvspace{3ex plus .5ex minus .2ex}%
\startsection{2}}

Margins of a display section can be adjusted using the command\adjustsectionmargins

\adjustsectionmargins{〈left skip〉}{〈right skip〉}

4

The 〈left skip〉 and 〈right skip〉 are added to the left and right margins of the
subsequent section if it is a display section. Otherwise, this command is ignored.

Modifiers. The customization of a number tag and running head of a partic-
ular section is provided with so-call modifiers. A modifier is a command acting on
the nearest sectioning command going after it. Usually, the modifiers are placed
just before a sectioning command. All modifiers act on non-starred versions of
sections. If the next sectioning command is starred, modifiers are ignored.

The \norunninghead modifier suppresses generation of running head for the\norunninghead

next non-starred section, i.e. it skips the call of section mark command in the next
section.

The \runninghead{〈running-title〉} modifier overrides a text going to the run-\runninghead

ning head when a new non-starred section starts and an appropriate
\pagestyle is in use. This command has higher priority than the \norunninghead.

The \noheadingtag modifier suppresses a number tag in the next section, but\noheadingtag

all other attendant actions are executed (writing to the aux-file and updating the
running head).

The \headingtag{〈tag〉} modifier overrides a number tag in the next section.\headingtag

It has the higher priority than \noheadingtag. Overridden section tag can be
referred with the \label command. All fragile commands in the overridden tag
should be protected.

The \headingtag*{〈tag〉} modifier prepares a number tag as is, ignoring the\headingtag*

tag style, prefix, and suffix. The aux-file and running head are not updated in this
case.

The \skipwritingtoaux suppresses writing to aux-file for the next section\skipwritingtoaux

command.

NOTE: All modifiers use global settings.

The captions are implemented in this package using the same technique as the\caption

\caption* sectioning commands. There are two versions of caption command allowed within
floating environments:

\caption[〈toc-entry〉]{〈title〉} and
\caption*{〈title〉}

The first one works in the same manner as the standard LATEX \caption com-
mand. Its starred version prepares a caption without number and preceding words
‘Figure’ or ‘Table’.

You can use line breaking commands in captions. But in this case, you need
to set the optional 〈toc-entry〉 parameter to avoid translation errors.

Caption appearance can be customized. You can customize ether all caption
types or only selected caption type. The following commands do this:

\captionstyle[〈type〉]{〈style〉}
\captiontagstyle[〈type〉]{〈style〉}
\captiontagsuffix[〈type〉]{〈suffix 〉}
\captionwidth[〈type〉]{〈length〉}

5

If 〈type〉 is omitted and these commands appear out of float environments, they are
applied to all types. A command without 〈type〉 applied within a float environment
is considered as a command having the type of this environment. Typed version
of a command has a precedence before a non-typed one.

specifies a style the caption text will be formatted:\captionstyle

default standard LATEX’s style,

para simple paragraph without paragraph indent,

left all lines are flushed left,

center all lines are centered,

right all lines are flushed right, or

centerlast as para, but the last line is centered.

specifies a position of caption tag:\captiontagstyle

para tag is formatted together with text,

left tag is adjusted to the left in a separate line,

center tag is centered in a separate line, or

right tag is adjusted to the right in a separate line.

specifies a suffix after caption tag.\captiontagsuffix

specifies a width of caption.\captionwidth

Defaults:

\captionstyle{default}
\captiontagstyle{para}
\captiontagsuffix{:\hspace{0.7em plus 0.2em minus 0.1em}}
\captionwidth{\linewidth}

NOTE: The above-described section modifiers can be used with non-starred
captions. Although, the \runninghead and \norunninghead commands have no
sense with captions, but you can do them working if define a \figuremark{} or
\tablemark{} command.

The \SetTOCStyle{〈declarations〉} command allows customize the table of\SetTOCStyle

contents and other content lists. For example, the declaration

\SetTOCStyle{\small}

specifies that content lists will be prepared with the \small font. This command
is allowed in the preamble only.

The appearance of Chapter/Appendix prefix in a table of contents and in a\ChapterPrefixStyle

running head can be customized using the command

6

\ChapterPrefixStyle{〈appearance list〉}

The 〈appearance list〉 can contain up to two words, namely header and/or toc,
delimited with a comma. Using them, you can set a prefix-style for the header
and/or the table of contents, respectively. By default, the prefix-style is specified
for the header only. This command is allowed for book-like classes in which the
\chapter command is defined. It can be used in the preamble only.

3 Create New Section Styles

Along with 8 predefined section styles, you can easy create more styles.
The command\newplainsectionstyle

\newplainsectionstyle{〈name〉}{〈indent〉}[〈pos〉]
{〈left skip〉}{〈right skip〉}

creates a new paragraph-like section style with the given 〈name〉. It has the
〈indent〉 paragraph indent and margins specified with 〈left skip〉 and 〈right skip〉
lengths. To prepare a centered style, the optional 〈pos〉 parameter should be equal
to [c]. In this case, left and right margins must have an additional 1fil glue. If
optional parameter is [r], the left margin must have an additional 1fil glue.

Four of predefined section styles are created using this command as follows:

\newplainsectionstyle{parindent}{0pt}{\parindent}{0pt}
\newplainsectionstyle{parindent*}{0pt}{\parindent}{0pt plus 1fil}
\newplainsectionstyle{center}{0pt}[c]{0pt plus 1fil}{0pt plus 1fil}
\newplainsectionstyle{centerlast}{0pt}[c]{0pt plus 1fil}{0pt plus -1fil}

Analogously to the centerlast style, the rightlast style (last line is adjusted
to the right) can be easy created:

\newplainsectionstyle{rightlast}{0pt}[r]{0pt plus 1fil}{0pt plus -1fil}

The command\newhangsectionstyle

\newhangsectionstyle{〈name〉}{〈min tag width〉}[〈pos〉]
{〈left skip〉}{〈right skip〉}

creates a new hang-indented section style with the given 〈name〉. The 〈min tag
width〉 length specifies a minimum width of the section tag. If a width of section
tag is less than this parameter value, a white space will be inserted surround the
tag to have the required width. The method of inserting a white space is the same
as in the \makebox command. It is controlled with the optional 〈pos〉 parameter
(l, c, or r; l default). Other parameters have the same meaning as in the previous
command.

Four of predefined section styles are created using this command as follows:

\newhangsectionstyle{hangindent}{0pt}{0pt}{0pt}
\newhangsectionstyle{hangindent*}{0pt}{0pt}{0pt plus 1fil}
\newhangsectionstyle{hangparindent}{0pt}{\parindent}{0pt}
\newhangsectionstyle{hangparindent*}{0pt}{\parindent}{0pt plus 1fil}

7

The following examples shows possibilities of these commands:

3.1 This subsection was prepared in the margin style

The definition of the margin style is the following:

\newhangsectionstyle{margin}{2in}[r]{-2in}{0pt plus 1fil}

3.2 This subsection was prepared in
the list style

The definition of the list style is the following:

\newhangsectionstyle{list}{1in}{0pt}{1in plus 1fil}

3.3 This subsection was prepared in the
flushright style

The definition of the flushright style is the following:

\newplainsectionstyle{flushright}{0pt}[r]{1in plus 1fil}{0pt}

4 Declare Sections and Captions

To define or redefine a section or caption command, you can use in the preamble\DeclareSection

of your document the following command:

\DeclareSection{〈level〉}{〈type〉}[〈indent〉]{〈prefix 〉}{〈beforeskip〉}
{〈afterskip〉}{〈style〉}

〈level〉 a section level number. Zero and negative values are interpreted as
follows: 0 means declaring the \chapter or \part command depend-
ing on a class used; a negative value means declaring a caption.

〈type〉 a section type. For zero level, this parameter is ignored. For negative
level, it defines a float type (i.e., figure or table). For positive
level, it defines a counter name. The name of marking command is
composed from the type as \〈type〉mark.

〈indent〉 indentation of heading from the left margin (zero is default). Ignored
for negative levels.

〈prefix 〉 a prefix inserted before a section-number tag (usually empty). In
chapter, part, or caption declaration commands, it is inserted
right before the tag name, e.g., before the \@chapapp, \partname,
\figurename, or \tablename command.

〈beforeskip〉 the skip to leave above the heading.

8

〈afterskip〉 if positive, then the skip to leave below the heading, else negative
of skip to leave to right of running heading. The negative value is
allowed for positive section levels only.

〈style〉 commands to set a style. The last command in this argument may be
a command such as \MakeUppercase that takes an argument. The
section heading will be supplied as the argument to this command.
So setting it to, say, \bfseries\MakeUppercase would produce bold,
uppercase headings.

Sections having nonnegative 〈level〉 and positive 〈afterskip〉 are display sections.
They are declared with the hangindent style and do not obey the \sectionstyle
command.

To declare a display section having dynamic alignment controlled with the\DeclareSection*

\sectionstyle command, use the star-version of the previous command:

\DeclareSection*{〈level〉}{〈type〉}{〈prefix 〉}{〈beforeskip〉}
{〈afterskip〉}{〈style〉}

A negative 〈afterskip〉 has no meaning in this case.
To prepare bold section headings, you can use the \bff command in the 〈style〉\bff

parameter. It tries to set everything bold. Its definition is the following:

\newcommand{\bff}{\normalfont\bfseries\mathversion{bold}}

Examples of section and caption declarations:

\DeclareSection{-2}{table}{}{0pt}{10pt}{}
\DeclareSection{-1}{figure}{}{10pt}{0pt}{}
\DeclareSection*{1}{section}{}%

{3.5ex plus 1ex minus .2ex}%
{2.3ex plus .2ex}{\Large\bff}

Here we declare the table caption command with zero skip before it and 10pt skip
after it. On contrary, the figure caption command produces 10pt skip before it and
zero skip after it. The \section command is declared with dynamic horizontal
alignment. It is prepared in the \Large font with everything bold.

The \SectionTagSuffix{〈suffix 〉} command specifies a default suffix inserted\SectionTagSuffix

after a section number tag. For example, the command

\SectionTagSuffix{.\quad}

sets the decimal point after every section number tag. Sections of 0th level ignore
this suffix. The default tag is \quad. The command can be used in the preamble
only.

The \RunningSectionSuffix{〈suffix 〉} command specifies a suffix inserted\RunningSectionSuffix

after a running section title right before the skip after section. It can be used in
the preamble only. The default value is an empty suffix.

To remove the suffix after a running section, put the \norunningsuffix mod-\norunningsuffix

9

ifier in the parameter of running section.
The \CaptionTagSuffix{〈suffix 〉} command specifies a default suffix inserted\CaptionTagSuffix

after a caption number tag. It can be used in the preamble only. The default
caption tag is:

\CaptionTagSuffix{:\hspace{0.7em plus 0.2em minus 0.1em}}

5 Declare TOC-Entries

To declare an entry of table of contents or other lists (list of figures or list of\DeclareTOCEntry

tables), use the following command (in the preamble only):

\DeclareTOCEntry{〈level〉}{〈action〉}{〈prefix 〉}{〈prototype〉}
{〈style〉}[〈next〉]

〈level〉 a section level number. For zero and negative level the following
commands are created: 0 means \l@chapter or \l@part depend-
ing on class used; −1 means \l@figure; −2 means \l@table. If
level is greater than 5, the name of toc-entry command is gener-
ated as \l@section@〈level-in-roman〉, i.e., the toc-entry of 6th level
is \l@section@vi.

〈action〉 commands applied before entry is produced (usually empty).

〈prefix 〉 text inserted before the section number (usually empty).

〈prototype〉 prototype of number for alignment the toc-entry body. The hang
indent of this toc-entry will be equal to the width of

〈style〉{〈prefix 〉〈prototype〉〈numberline-suffix 〉}

〈style〉 commands to set a style. The last command in this argument may
be a command such as \MakeUppercase that takes an argument. The
produced entry will be supplied as the argument to this command.
So setting it to, say, \bfseries\MakeUppercase would produce bold,
uppercase entry. This style is applied to the number also and to the
page number. To apply different styles to the text of entry and to its
page number, use in this parameter the command

\applystyle{〈text-style〉}{〈number-style〉}

〈next〉 prototype for left margin adjustment for an entry of the next level.
Default is the hang indent of the current toc-entry.

A toc-entry is produced within a group.
The \NumberlineSuffix{〈calc-suffix 〉}{〈actual-suffix 〉} command allows cus-\NumberlineSuffix

tomize a skip inserted after numbers in TOC-like entries. The 〈calc-suffix 〉 pa-
rameter is used in calculations of hang indent of toc-entries and the 〈actual-suffix 〉
is really inserted at the end of number. The {〈calc-suffix 〉} is usually wider than

10

the 〈actual-suffix 〉. The default is \NumberlineSuffix{\quad}{\enskip}. This
command is available in the preamble only.

The \PnumPrototype{〈prototype〉} command is used for adjustment the right\PnumPrototype

margin of the text of toc-entries in toc-lists. Default is \PnumPrototype{99}. If
your document has more than 99 pages, use \PnumPrototype{999}. This com-
mand is available in the preamble only.

The \TOCMarginDrift{〈increment〉} command specifies a value of right-\TOCMarginDrift

margin drift in TOCs. The increment is applied after the \@plus token in defini-
tion of right margin. Empty argument means no drift. Examples:

\TOCMarginDrift{2em}
\TOCMarginDrift{1fil}

The command can be use anywhere in the document.
This command is useful in the 〈action〉 parameter of the toc-entry declaration\runinsectionskip

to produce the skip before a toc-entry equal to the skip before run-in sections.
The following example shows how toc-entries are declared in books:

\DeclareTOCEntry{-2}{}{}{9.9}{}% table
\DeclareTOCEntry{-1}{}{}{9.9}{}% figure
\DeclareTOCEntry{0}{\runinsectionskip\def\@dotsep{1000}%
\aftergroup\penalty\aftergroup\@highpenalty}{}{9}{\bff}% chapter

\DeclareTOCEntry{1}{}{}{9.9}{}[9.9]% section
\DeclareTOCEntry{2}{}{}{9.9.9}{}[9.9.9]% subsection
\DeclareTOCEntry{3}{}{}{}{}[\qquad]% subsubsection

The number prototype for figures and tables is ‘9.9’ here. The \l@chapter entry
applies the run-in section skip before it and redefines the \@dotsep command to re-
move dot leaders. Using the \aftergroup command, it inserts the \@highpenalty
after this toc-entry to avoid a page break at this point. The left margin adjust-
ment after section and nested toc-entries is calculated here using the prototype of
widest section number. This produces the following nesting:

1 Chapter
1.1 Section

1.1.1 Subsection
Subsubsection

6 Declare New Float Types

The standard LATEX classes provide two types of floating environments: figures
and tables. If you have prepared a new floating environment in some way (i.e.,
using the float package by Anselm Lingnau), you can declare a caption for the
new float with the commands described in previous sections.

In books, when a new chapter starts, the \chapter command puts a special\RegisterFloatType

vertical skip to the contents of list of figures and of list of tables. This behaviour
can be easy extended to new float types if you register them within this package.
The registration is provided with the following command:

11

\RegisterFloatType{〈float-type〉}

After the float type is registered, you can declare a toc-entry for it using the
negation of its registration number in the 〈level〉 parameter. The first new float
type is registered third (after the figure and table). So, you must use 〈level〉 = −3
for it, −4 for the next registered float type and so on.

In the following example, we define a new float type, program, and prepare the
caption and toc-entry commands for it. The caption of programs is supposed to
be used at the beginning of program. So, we make it in the same manner as the
table caption.

\documentclass{book}
\usepackage{float,nccsect}
\newfloat{program}{tp}{lop}[chapter]
\floatname{program}{Program}
\RegisterFloatType{program}
\DeclareSection{-3}{program}{}{0pt}{10pt}{}
\DeclareTOCEntry{-3}{}{}{9.9}{}

To produce a list of programs, you can then use the \listof command from
the float package as follows:

\listof{program}{List of Programs}

7 Epigraphs and Related Staff

To put epigraph before any chapter, you can use two methods: low-level\beforechapter

\epigraph \beforechapter{〈anything〉} hook or user-level command

\epigraph[〈width〉]{〈text〉}{〈author〉}

The last one applies a special formatting to epigraph and calls the first one. The
\beforechapter hook inserts its contents at the beginning of page just before a
chapter instead of spacing specified in the chapter declaration.

Formatting of user-level epigraph is provided with the following command\epigraphparameters

\epigraphparameters{〈style〉}{〈width〉}{〈height〉}{〈author-style〉}
{〈after-action〉}

Here 〈style〉 is a style applied to the whole epigraph (font selection, spacing and
positioning, etc.), the 〈width〉 is the default epigraph width (can be changed in an
epigraph), the 〈author-style〉 is the style applied to the author’s signature, and the
〈after-action〉 is an action applied after the epigraph (usually a vertical spacing).
All styles and actions are applied in the vertical mode. An 〈author-style〉 can
finish with one-argument macro getting the author of epigraph and formatting it.

In \epigraphparameters, you can use the \epigraphwidth macro which con-\epigraphwidth

tains a selected epigraph width.
The default style is:

12

\epigraphparameters{\StartFromHeaderArea\small\raggedleft}
{.45\linewidth}{5\baselineskip}
{\raggedleft\itshape}{\vspace{2ex}}

The \vspace* command applied at the beginning of page has one serious\StartFromTextArea

disadvantage: it skips more space that specified in its parameter. To remove
this disadvantage, we introduce the \StartFromTextArea command that inserts
a zero-height strut and allows use the \vspace command after it without troubles.

You can also extend the text area on the header if apply the\StartFromHeaderArea

\StartFromHeaderArea command at the beginning of page. Such action is useful
in epigraphs: the first chapter’s page usually has an empty header and positioning
an epigraph from the header is the good practice.

8 Declare Part

The \part command in book-like classes is the only sectioning command that
cannot be prepared with the \DeclareSection command. So, we add special
declarations to provide parts in books with features of other sectioning commands.

To redefine the \part in books, use the following declaration:\DeclarePart

\DeclarePart{〈before〉}{〈after〉}{〈prefix 〉}{〈style〉}

〈before〉 an action applied before a part at the beginning of page. It usually
specifies a vertical skip \vfil and a paragraph style to be applied to the
part number tag and title.

〈after〉 an action applied after the part. It usually contains \vfil and page
finishing commands.

〈prefix 〉 a prefix inserted before a part tag. It contains style commands to be
applied to the tag and the \vspace command specifying a distance be-
tween the part tag and title. The \partname command goes right after
the prefix.

〈style〉 a style to be applied to the part title. It can end with \MakeUppercase.

The default declaration of the \part is the following:

\DeclarePart{\StartFromTextArea\vfil\centering}%
{\vfil\newpage \if@twoside\if@openright

\mbox{}\thispagestyle{empty}\newpage\fi\fi}%
{\vspace{4ex}\huge\bff}{\Huge\bff}

The \StartFromTextArea command prevents ignoring a vertical space at the be-
ginning of page. All paragraphs of part title are centered horizontally using the
\centering declaration, and the title is centered vertically using \vfil commands
before and after it. A page after the part is made empty in two-side mode if it is
even. The space after the part tag is set to 4ex.

13

In Russian typesetting tradition, the part can be prepared in the same manner
as a chapter, i.e. a text going after a part is prepared on the same page with
the part title. It is easy to re-declare the part in such style. Let us start a part
from the header and delimit it from the text with a decorative line. The following
declaration does this:

\DeclarePart{\StartFromHeaderArea\centering}
{\vspace{2mm}\noindent\hrulefill\par
\addvspace{5mm}}

{\vspace{.5em}\LARGE\bff}{\Huge\bff}

But when a chapter goes right after a part, we need to place the part and chapter
titles together on the same page. This can be applied using the \beforechapter
hook:

\beforechapter{\part{〈part title〉}}
\chapter{〈chapter title〉}

Modifiers stored in the parameter of \beforechapter hook will act on the \part
command. Modifiers outside of \beforechapter will act on the \chapter com-
mand.

To produce a toc-entry command for a part, the following declaration is spec-\DeclareTOCPart

ified for book-like classes:

\DeclareTOCPart{〈action〉}[〈afterskip〉]{〈prefix 〉}{〈prototype〉}{〈style〉}

〈action〉 an action applied before the part toc-entry. It usually a skip before
part. It is recommended to prepare it with \NCC@secskip command.

〈afterskip〉 a skip after this entry. If it is omitted, the default \NCC@runskip value
is applied after this entry.

〈prefix 〉 a prefix inserted before a part tag (usually empty).

〈prototype〉 a prototype of part tag used for calculation the hang indent in this
entry.

〈style〉 a style applied to the whole text of entry and to the page number. The
\MakeUppercase is allowed to finish this parameter. The \applystyle
command can be used inside it to apply different styles to the toc-entry
and the page number.

The default declaration of the part toc-entry is the following:

\DeclareTOCPart{\NCC@secskip{4ex \@plus .2ex}%
\def\@dotsep{1000}}%

{}{\partname\ II}{\large\bff}

14

