Return-Path: Received: from matups.math.u-psud.fr ([129.175.50.4] verified) by vsu.ru (CommuniGate Pro SMTP 3.5) with ESMTP id 87434 for CyrTeX-en@vsu.ru; Sun, 09 Dec 2001 16:47:09 +0300 Received: from beryl.math.u-psud.fr (beryl.math.u-psud.fr [129.175.54.194]) by matups.math.u-psud.fr (8.11.6/jtpda-5.3.3) with ESMTP id fB9DkkI04291 for ; Sun, 9 Dec 2001 14:46:46 +0100 (MET) Received: (from sieben@localhost) by beryl.math.u-psud.fr (8.10.2+Sun/8.10.2) id fB9El1519135; Sun, 9 Dec 2001 14:47:01 GMT Date: Sun, 9 Dec 2001 14:47:01 GMT Message-Id: <200112091447.fB9El1519135@beryl.math.u-psud.fr> From: sieben@cristal.math.u-psud.fr To: CyrTeX-en@vsu.ru, lcs@beryl.math.u-psud.fr Subject: Bernstein polynomials Dear Russian Wintel users, Metafont depends on cubic spline curves, which involve polynomials introduced in 1913 by Sergej Natanovi'c Bernwtejn in a Xarkov journal. I have just managed to get from A. 'Cernavskij in Moskow a MSWord copy of this 2-page article. Unfortunately, it appears to be 98% unreadable in the West, since an 'eastern' version of MSWord was involved (but, the article was written in French!). I would be most grateful if one of you could translate to open *convertable* formats such as ASCII text, GIF, PNG, TIFF, TeX. I hope the bitmapped parts will be extracted as is -- in a "lossless" format. Then I will post the best results for the TeX-metafont community using durable and open format(s). I have posted the MSWord binary files in a temporary 'anonymous' directory: ftp://topo.math.u-psud.fr/pub/lcs/bernstein Beware: This ftp is probably inccessible to both Netscape and IE. Try NCSATelnet or Fetch or lynx (More exactly, it is accessible to anything that uses ftp PORT access and not PASV.) Cheers Laurent Siebenmann %%%%%%%%%%%%%%%%%%%% > Reception: chernav@iitp.ru Thu Dec 6 21:59:52 2001 > Message-ID: <001901c17e98$dae2a5e0$d94a13c3@pop3> > Reply-To: "'a..'O"E'E" > From: "'a..'O"E'E" > To: "Siebenmann Laurent Carl" > Subject: Bernstein > Date: Thu, 6 Dec 2001 23:55:37 +0300 > Organization: 'e'e 'a^i > > J'envois la copie de la note de Bernstein en deux formes et > trois messages. la forme premi`ere est scann'ee comme > texte (mais quelque formules compliqu'ees comme les > figures) et la forme seconde comme deux figures (une pour > une page). J'envois chaque figure s'epar'ement puisque les > messages trop grands pour la gorge de mon ligne de > t'el'ephone vont avec la probabilit'e trop petite. > > ... > > A.